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An Observation Concerning Ritz-Galerkin Methods 
with Indefinite Bilinear Forms 

By Alfred H. Schatz 

Abstract. Existence, uniqueness and error estimates for Ritz-Galerkin methods are 

discussed in the case where the associated bilinear form satisfies a Garding type 
inequality, i.e., it is indefinite in a certain way. An application to the finite element 

method is given. 

In this note, we would like to discuss existence, uniqueness and estimates over 
the whole domain for some Ritz-Galerkin methods where the bilinear form satisfies 
a Guarding type inequality, i.e., it is indefinite in a special way. We shall first illustrate 
the problem by an example. 

For simplicity, let &7 be a simply connected convex region in the plane with 
a polygonal boundary Mi and consider the Dirichlet problem 

2 2 
(1) Lu I - D.(a..(x)DU) + ?Zb(x)Diu + c(x)u =f in Q2, u = O on am, 

i~= I ifJ i 

where L is uniformly elliptic in 2; for simplicity, we assume that the coefficients 
belong to C1(-Q). Let us suppose that for each f C L2(f2), the problem (1) has a 
unique solution u. It is then well known that u C W2(i) 2 W2(i). Suppose that 
we wish to approximate u using the finite element method. For this, we subdivide 
Q into triangles with largest side h and smallest angle a > ao > 0 and define a 
finite-dimensional subspace Sh C to be, for example, the set of piecewise linear 
functions on this triangulation which vanish on MQ. We then seek to determine an 
approximate solution uh C Sh from the Ritz-Galerkin equations 

B(Uh, o) =B(u, p) = Jjfdx, for all p C Sh, 
(2) /2 

B(u, ~) = (i1 ai.(Diu)(D j) + 2 bi(Diu) p + cu a dx. 

Let us note the inequality 

0 

(3) jB(u, p)I < CIHu ll1 11 I1i for all u, p E WICw). 
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In general, we have Garding's inequality 

(4) C1 IIvI2I - C2 IIvII2 < IB(v, v)I for all v C w(2(Q). 

Here, C1 and C2 are constants with C1 > 0 and 11- IS denotes the norm on the 
Sobolev space W~s(Q) with W(?(Q) = L 

In the case that C2 < 0, and hence B is positive definite, the existence and 
uniqueness of uh satisfying (2) follows from (3). This case has been extensively 
studied in the literature (e.g., [2], [5] ). If however C2 > 0, then B may be indef- 
inite and the existence and uniqueness of uh does not immediately follow. In fact, 
simple examples show that a solution of (2) need not existdepending on the sub- 
space Sh used. It will turn out however that, if h is sufficiently small, then exis- 
tence and uniqueness of uh can be guaranteed and quasi-optimal error estimates 
hold. 

Let us show how this may be done very simply. We shall first derive an a 
priori estimate. If e = u - uh satisfies (2), then using (3) and (4) we obtain 

C lie 12I - C2 le ll2 < IB(e, e)I = IB(e, u)I 

< C Ile 111llull 

Dividing through by lie 1, we have 

(5) Hell1 - (C2/C1)11ello < C/C1 Ilull1. 

Now, if e = u - uh satisfies (2), a very useful argument of Nitsche [4] can be used 
to show the a posteriori estimate 

(6) Ilell0 < C4h lelu1, C4 independent of h and e. 

This inequality is derived, for example in [2], where the above example was discussed 
in the case that C2 = 0, i.e., B is positive definite. Essential use is made of the 
assumption that (1) and the associated adjoint problem are uniquely solvable. 

Collecting (5) and (6) and taking h < (C1 IC2)C4, when C2 > 0, we obtain 

(7) liu - Uh 111 < C5 lull1, C5 independent of h, u and uh. 

Our result now follows easily. For if Uh is a solution of (2) corresponding to 
u = 0, it follows from (7) that uh = 0. Hence, the homogeneous equation has a 
unique solution and, since Sh is finite dimensional, this implies that Uh exists and 
is unique for each u C W21(2). The optimal error estimates 

(8) Hell. < C6hs-illulS, (1=0, 1) and (s = 1, 2) 

follow in the usual way from (6), (7) and the properties of Sh. Let us remark that 
if the polygonal domain 2 is not convex, i.e., it has an interior angle which is 
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greater than ir, then one can show that instead of (6) one has Hell% < C4h7 Ihell . Here, 

y is positive and depends on the maximum interior angle and the nature of the coef- 

ficients of L in a neighborhood of the vertex of the corresponding corner. In this 

case, the proof of existence of uh is essentially the same, but quasi-optimal estimates 

in L2(&2) are not obtained. 

Let us now show that the method outlined above may be extended to more 

general situations. We shall consider our problem in a setting which is a slightly 

modified version of a general formulation of Ritz-Galerkin methods given by Babuska 

(cf. [1],5 [2]). 

Let H1 C Ho be real Hilbert spaces with a continuous embedding; i.e., 

IIUIIH0 ? IIUIIH1 for all u C H1. Let B(u, v) be a bilinear form defined on H1 x H1 

and, for h C (0, 1], let eh denote a one-parameter family of finite-dimensional 

subspaces of H1. For given u E H1, we seek a solution uh GE h satisfying 

(9) B(u -Uh, A) = 0O for all 0 E Sh. 

We shall make the following assumptions concerning B and Sh: 
Al. For any 7? C Sh, there exist constants C1 > 0 and C2, both independent 

of 7? and h, such that 

(10) c "In -1 C2 II"HO < sup IB(77, fo)j, for all GE 5" with = I 1 1 H1 2 H0H 

A2. There exists a constant C such that 

(11) [B(U, V)I < CIIUIIH IIVIIH , for all u, v C H1. 

A3. The following analogue of (6) holds: There exists a function w(h) such 

that, if e = u - uh is a solution of (9), then 

( 1 2 ) IlellH < w(h) HellH 
01 

where lim w(h) = 0 as h >- 0. 

THEOREM. Suppose that the above conditions hold. Then there exists an 
ho > 0 such that, for all h C (0, ho], Eq. (9) has a unique solution uh C Sh for 
each u C H1. Furthermore, 

(13) HelH < CIIUIIH and IHellH < Cw(h)IuIIH , 

where C is independent of h and u. 
Proof We first remark that, if C2 < 0, then the result easily follows. Sup- 

pose e = u - uh satisfies (9). Then, from (10), we have for f C se, IPI<IH1 1, 

that 
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C1 lIt "1 H -C2 IIuhIIH < sup[B(Uh, p)I < suplB(u, p)l < CIIuIIH 
1 ~~~0 

or 

IIuh IIH - (C2/Cl) IIuh IIH < (C/C1) IIU IIH 
1 01 

Using the triangle inequality, we obtain 

(14) IHellH - 
(C2/C,) I1eIIH O HI 1U 

where C is a new constant independent of u, e and h. The inequality (14) is 

analogous to (5) and the proof now proceeds in the same way as in the example given 
except that we use (12) instead of (6). 

The essential point here is that an inequality of the type (12) may be effectively 
used to treat indefinite bilinear forms where the indefiniteness is caused by lower 

order terms. For many methods, this inequality can be established using the previ- 
ously mentioned technique of Nitsche. 
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